
Dynamic Loading
And Unloading Of Fonts
by Stewart McSporran

The problem with delivering
applications for the Windows

environment is that you can never
guarantee that any non-standard
fonts you use in your application
will be available on your users’ sys-
tems. The traditional solutions are
either to give the user the font and
tell them to install it (which is
messy and unprofessional), or to
use one of the installation pro-
grams which knows how to install
fonts (this is often overkill). A sim-
pler solution is to provide the font
file with your application and to
automatically install it when your
program starts and then remove it
when the program ends.

This article describes a unit,
DYNFONT.PAS, which allows dy-
namic loading and unloading of
fonts for Delphi 1 and Delphi 2
applications.

Installing A Font
Installing a True Type font in
Windows is essentially a three step
process:
➣ Create a resource file, with the

extension .FOT, based upon the
supplied .TTF font file;

➣ Add this resource file to the
Windows font table;

➣ Send a WM_FONTCHANGE message
to the system to inform it that
the fonts have changed.

So, how do we create a font re-
source file based upon the .TTF
file? In swoops the API CreateScal-
ableFontResource function to our
rescue. It needs to be told where
the .TTF file is and where the new
.FOT file is to be created. If your
program is only ever going to be
run on a standalone machine then
the location of the .FOT file can
simply be the directory where your
program is installed. However, if
you intend to keep your program
on a network drive and have it ac-
cessed by multiple users then
things become more complex.

For CreateScalableFontResource
to work the network user must
have create permission on the di-
rectory where the .FOT file will be
stored. As it is common practice to
only give users read access to ap-
plication directories we can’t as-
sume anything about the location
of the .FOT file. Even assuming that
the users do have create permis-
sion on the application directory
still gives problems: if we simply
give the .FOT file the same name as
the .TTF file then each new user will
overwrite the .FOT file created by
the previous user (and will delete
it when they finish running the pro-
gram). Experiments with a Netware
3.12 system have shown that this
does not appear to affect the run-
ning of the program, but such a hit
and miss approach to the creation
and deletion of files sends shivers
down my spine.

The solution to this is to use the
Windows API GetTempFileName and
GetTempDrive (for Windows 3.x) or
GetTempPath (Win32) functions.
These will provide us with a path
to each user’s TEMP directory and a
unique filename for the .FOT file.

When the font resource has been
created the Windows font table is
updated by calling AddFontResource
and passing it the path to the .FOT
file. Finally WM_FONTCHANGE is sent to
notify the system of the changes.

Removing A Font
Subsequent removal of a font is
another three step process:
➣ Remove the font resource file

from the Windows font table;
➣ Delete the font resource file;
➣ Send a WM_FONTCHANGE message

to the system to inform it that
the fonts have changed.

Removing a previously installed
font is done by calling RemoveFon-
tResource and passing it the path to
the .FOT file, which was returned
to us from the earlier call to

CreateScalableFontResource. This
removes the entry from the
Windows font table. As the .FOT file
is no longer required it is then de-
leted from the TEMP directory.
Finally the WM_FONTCHANGE message
is sent to notify the system of the
changes.

DynFont Unit
The DynFont unit exports two pro-
cedures and an exception type.
The exception EDynFontError is
raised if any problems occur inside
its procedures. The two proce-
dures LoadFonts and DeleteFonts
are described below. DynFont
should be added to the uses clause
of the project’s .DPR file.

Since, in order to remove a font
at a later time, it is necessary to
know the names and locations of
the .FOT files created by Create-
ScalableFontResource, DynFont also
contains a private global variable
slFonts which is a stringlist that
stores the names of all the .FOT
files. This variable is created in the
initialization section of the unit
and freed by either the DeleteFonts
procedure for Delphi 1 or the
finalization section for Delphi 2.

Listing 1 shows the complete
source for this unit.

LoadFonts Procedure
The LoadFonts procedure is respon-
sible for installing the fonts and
should be called from the project
file before any forms are created.
Its parameter is an array of font file
names, without their .TTF exten-
sion. For example, the line of code
below will load the fonts
STRANGE.TTF, WEIRD.TTF and
CRAZY.TTF into the system (the
fonts should reside in the same
directory as the application’s
executable):

LoadFonts([’strange’,’weird’,
 ’crazy’]);

February 1997 The Delphi Magazine 19

LoadFonts in turn calls LoadFont for
each font file you wish to install
before finally sending the WM_FON-
TCHANGE message to notify the sys-
tem that there have been changes
to the font table.

LoadFont is responsible for in-
stalling one font into the system. Its
single parameter is the name of a
font file minus the extension. For
example to load MYFONT.TTF we
call LoadFont(’MyFont’). It expects
to find the .TTF file in the same
directory as the application’s
executable file.

There is one amendment you
may wish to make to this proce-
dure. The first parameter of
CreateScalableFontResource indi-
cates whether the font is only for
the use of this application (has the
value 1) or may be made available
to other applications (has the
value 0). The current implementa-
tion sets this to 1, since the font
may be removed from the system,
by exiting this Delphi application,

while another application is still
using it.

DeleteFonts Procedure
DeleteFonts removes all the fonts
installed by any previous call(s) to
LoadFonts. It should be called from
the project file, but should come
after the line Application.Run in the
.DPR project file.

DeleteFonts iterates through all
the .FOT files stored in the slFonts

stringlist, calling RemoveFontRe-
source for each to remove it from
the font table and then deleting the
.FOT file. Once it is finished it sends
a WM_FONTCHANGE message to inform
the system of the changes to the
font table.

Where’s My TEMP?
The strTempPath function is used by
the Delphi 2 implementation to get
the location of the TEMP directory. It

unit dynfont;
interface
uses SysUtils;
type {Create a customised exception for this process}
 EDynFontError = class(Exception);
procedure LoadFonts(aFontNames : array of string);
procedure DeleteFonts;
implementation
uses
 {$ifdef WIN32} windows,
 {$else} wintypes, winprocs, {$endif}
 messages, classes, forms;
var slFonts : TStringList;
{$ifdef WIN32}
{ Returns the path to the system’s TEMP dir (Win32)}
function strTempPath : string;
var
 strTempPath : string;
 nChars : integer;
begin
 SetLength(strTempPath,255); {allocate 255 chars in string}
 { get the temp location }
 nChars := GetTempPath(254,PChar(strTempPath));
 { Check that GetTempPath worked ok }
 if (nChars = 0) or (nChars > 254) then
 raise EDynFontError.Create(
 ’Can not get location of TEMP directory’);
 result := strTempPath;
end;
{$endif}
procedure LoadFont(name : string);
var
 pstrFotFile, pstrTmp, pzttf : array [0..250] of char;
 ttf : string;
begin
 {Create a path to this directory & the font file}
 ttf := ExtractFilePath(Application.ExeName) +
 name + ’.ttf’;
 StrPCopy(pzttf,ttf);
 {We want to create the .fot files in the temp dir}
 {$ifdef WIN32}
 GetTempFileName(PChar(strTempPath), PChar(name),
 0, pstrFotFile);
 {$else}
 GetTempFileName(GetTempDrive(’x’),
 StrPCopy(pstrTmp,name), 0, pstrFotFile);
 {$endif}
 {store temp filename in string list to delete it later}
 slFonts.Add(StrPas(pstrFotFile));
 {if the fot file exists then delete it}

 SysUtils.DeleteFile(StrPas(pstrFotFile));
 {Create the fot file}
 if not CreateScalableFontResource(1,
 pstrFotFile, pzttf, nil) then
 raise EDynFontError.Create(
 ’Error in CreateScaleableFontResource.’+#10+ttf);
 {Add it to the font table}
 if AddFontResource(pstrFotFile) = 0 then
 raise EDynFontError.Create(
 ’Error in AddFontResources ’ + name);
end;
procedure LoadFonts(aFontNames : array of string);
var
 i : integer;
begin
 {call loadfont for each item in the array}
 for i:=low(aFontNames) to high(aFontNames) do
 LoadFont(aFontNames[i]);
 {Inform the system that the fonts have changed}
 SendMessage($FFFF,WM_FONTCHANGE,0,0);
end;
procedure DeleteFonts;
var
 pstrTmp : array [0..150] of char;
 i : integer;
begin
 {iterate through FOT files}
 for i:=0 to slFonts.Count - 1 do begin
 {Remove the font from the window’s font table
 then delete the tmp file}
 if not RemoveFontResource(
 StrPCopy(pstrTmp,slFonts[i])) then
 raise EDynFontError.Create(
 ’Error in RemoveFontResource’);
 SysUtils.DeleteFile(slFonts[i]);
 end;
 {Inform the system that the fonts have changed}
 SendMessage($FFFF,WM_FONTCHANGE,0,0);
 {$ifndef WIN32}
 slFonts.Free; {Finished with the string list}
 {$endif}
end;
initialization
 slFonts := TStringList.Create;
{$ifdef WIN32}
finalization
 slFonts.Free;
{$endif}
end.

➤ Listing 1

➤ Figure 1:
Sample
application at
design time

20 The Delphi Magazine Issue 18

shows how the new long string
type available in Delphi 2 may be
used as both a Pascal and a null
terminated string.

Sample Application
The sample application contains
the font file ACCE.TTF (font Accent
SF). Assuming that you do not al-
ready have this font installed in
your system then at design time

the demo form will look similar to
Figure 1. The memo’s Font.Name
property is set to Accent SF but as
this font is not available the
Windows font manager substitutes
a default font.

When you run the application
the font is installed and the form
should look like Figure 2.

Note that the formatting of the
text is different at run time to that

at design time. When designing an
application it is best to install the
font into your system to ensure
that the formatting is correct.

Running With Delphi 1 And 2
One final point, found out the hard
way. If you build a Delphi project in
Delphi 1 and then re-compile it with
Delphi 2, everything’s fine. If you
then try to re-compile it with
Delphi 1 it won’t work. The pro-
ject’s .RES file is converted from
16-bit to 32-bit format by Delphi 2.
I found it was best to keep a copy
of the 16-bit .RES file when I wanted
to test any changes with Delphi 1.

Stewart McSporran works for
training and consultancy company
Buchanan International in sunny,
warm, Glasgow in the UK, and can
be contacted as 100753,1703 on
CompuServe.

Copyright © 1997 Stewart
McSporran, All rights reserved

➤ Figure 2:
Sample
application
at run time

February 1997 The Delphi Magazine 21

	Installing A Font
	Removing A Font
	LoadFonts Procedure
	DeleteFonts Procedure
	Where’s My TEMP?
	Sample Application
	Running With Delphi 1 And 2

